TRANSPORTATION AND PLATFORMS PERSPECTIVE

Gary L. Bennett
National Aeronautics and Space Administration
Washington, DC

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

OFFICE OF AERONAUTICS AND SPACE TECHNOLOGY

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

SPACE RESEARCH & TECHNOLOGY

SPACE R&T MISSION STATEMENT

OAST SHALL PROVIDE TECHNOLOGY FOR FUTURE
CIVIL SPACE MISSIONS AND PROVIDE A BASE OF
RESEARCH AND TECHNOLOGY CAPABILITIES TO SERVE
ALL NATIONAL SPACE GOALS

- IDENTIFY, DEVELOP, VALIDATE AND TRANSFER TECHNOLOGY TO:
 - INCREASE MISSION SAFETY AND RELIABILITY
 - REDUCE PROGRAM DEVELOPMENT AND OPERATIONS COST
 - ENHANCE MISSION PERFORMANCE
 - ENABLE NEW MISSIONS
- PROVIDE THE CAPABILITY TO:
 - ADVANCE TECHNOLOGY IN CRITICAL DISCIPLINES
 - RESPOND TO UNANTICIPATED MISSION NEEDS

LBF4194B

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM SPACE R&T PROGRAM DEVELOPMENT

MAY 4, 1991 JCM-7586

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM RESEARCH & TECHNOLOGY STRATEGY

5-YEAR FORECAST INCLUDES

NEW STARTS

'93 THRU '97: COMPLETION OF INITIAL SSF LIMITED SOME SHUTTLE IMPROVEMENTS INITIAL EOS & EOSDIS SELECTED SPACE SCIENCE STARTS NLS DEVELOPMENT INITIAL SEI ARCHITECTURE SELECTION **EVOLVING GEO COMMERCIAL COMMSATS**

FLIGHT PROGRAMS FORECAST

10-YEAR FORECAST INCLUDES

NEW STARTS TO BE LAUNCHED IN 2003 THRU 2010

MINOR UPGRADES OF COMMERCIAL ELVS

'98 THRU '03: SSF EVOLUTION/INFRASTRUCTURE MULTIPLE FINAL SHUTTLE ENHANCEMENTS ADVANCED LEO EOS PLATFORMS/FULL EOSDIS MULTIPLE SPACE SCIENCE STARTS NLS OPERATIONS/EVOLUTION EVOLVING LAUNCH/OPERATIONS FACILITIES INITIAL SEI/LUNAR OUTPOST START DSN EVOLUTION (KA-BAND COMMUNICATIONS) NEW GEO COMMERCIAL COMMSATS

NEW COMMERCIAL ELVS

20-YEAR FORECAST INCLUDES

'04 THRU '11 MULTIPLE OPTIONS FOR NEW STARTS TO BE LAUNCHED IN 2009 THRU 2020

SSF-MARS EVOLUTION BEGINNING OF AMLS/PLS DEVELOPMENT MULTIPLE SPACE SCIENCE STARTS DSN EVOLUTION (OPTICAL COMM) INITIAL MARS HLLY DEVELOPMENT **EVOLVING LUNAR SYSTEMS** MARS SEI ARCHITECTURE CHOSEN

LARGE GEO COMMSATS **NEW COMMERCIAL ELVS**

LBF40305 (JCM-7692)

SPACE RESEARCH & TECHNOLOGY PROGRAM

LBF 40423c

OSSA TECHNOLOGY NEEDS Grouped According to Urgency & Commonality REVISED: NOVEMBER 15, 1991

[erm_	Detectors: IR Si & Ge arrays, multiplexers, CCD, optical, Xe, non-cryo IR, high punty Ge, sensor readout electronics & tunnel sensors (SE, SL_SZ_SS).	Cryogenic Systems Optics, coolers, shielding, electronics (SZ, SE, SL, SS)		2.5 · 4m, 100K Lightweight, PSR	Fluid Diagnostics	Real-Time Radiation Monitoring (SB)	Solar Arrays/Cells (SL, SZ, SE)	Telerobotics	High Trans- mission UV Filters (SZ)
Vear]	Submin & Microwave Tech: - SIS 1.2 THz Heterodyne Rec. - Active SAR Integrated circuits - Passive submin 600 GHz diodes (SZ SE)	Vibration Isolation Technology (SN, SZ, SB)	Telescience, Telepresence, & AI (SN, SL, SB)	Automated Biomedical Analysis (SB)	Rad Hard Parts & Detectors (SZ, SL)	Solid/Liquid Interface Characterization	Laser Light Scattering	High Temperature Materials For Furnaces (SN)	K-bend Transponders (SZ)
	Efficient, Quiet Refrigerator/Freezer (SB)	Extreme Upper Atmosphere Instrument Platforms (SS)		Real-Time Environmental by Control & Monitoring (SB)	Space Qualified maser & ion Clocks (SZ)	Field Portable Gas Chromato- graphs (SB)	Advanced Furnace Technology (SN)	3-D packaging for 1 MB Solid State Chips (SZ)	
	Lasers: Long-life, Stable & Tunable (SE, SZ, SL, SB)	Mini/microsystems — Instrumentation, rovers descent imager, camera, RTG ascent vehicle/lander, S/C subsystems (SL)	Actuators	Combustion Diagnostics (SN)	Plasma Wave Antennas/ Thermal (SS)	High Temperature Electronics (SL)	Non-Contact Temperature Measurement (SN)	Ultra-high Glgabit/sec Telemeny (SZ)	Microbial Decontamination Methods (SB)
	Data - High Volume, High Density, High Data Rate, On-board Storage & Conjunystion(SE, SL, SN, SZ).	Imerferometer-specific Tech: picometer metrology active delay lines control-structures interact. (SZ, SL, SB)	Microphonics Technology, FET develop- ment (SZ)	Auto S/C Monitoring & Fault Recovery (SL)	Improved EVA Suit/PLSS (EMU) (SB)	Thermal Control System (SZ)	Special Purpose Bioresctor Simulator Syst. (SB)	Reproduction	
Far Term	Controlled Structures/ Large Antenna Structure Arrays/Deployable (SE, SZ, SS, SB)	Parallel Software Environment for Model & Data Assimilation, Visualization Computational Techniques (SE, SL, SZ)	X-ray Option Tech; — imaging system — low cost option — Bragg concentrator — coasted spermes (c.	SETI Tectinologi Microwave & Optical/Laser Detection (SB)	es Regenerative Life Support (SB)	Auto Rendezvo Auto Sample Transfer, Auto Landing (SL)	us Non-Destruct Monitoring Capability (SB)	Ye Non-Destruc Cosmic Dus Collection (SB)	
	Interspacecraft Ranging & Positioning Precision Sensing Pointing & Control (SS, SZ, SL)	Large Filled Apertures — Eightweight & stable optics — Cryo optical ver., fab., test. — Deformable mirrors — 15-25m PSR (SL, SZ, SE)	Sample Acquisition Analysis and Preservation (SB, SL)	Optical Communication (SL, SS)	High Resolution Spectrometer (SB)	Spacecraft Thermal Protection (SL)	Partial-g/ µg Medical Care Delivery Systems (SB)	Dust Protection/ Jupiter's Rin (SL)	188
	50-100Kw fon Propulsion (NEP)		Radiation Shielding for Crews (SB)	SIS 3 Thz Heterodyde Receiver (SZ)	Human Artificial Gravity Systems (SB)	CELSS Support Technologies (SB)			
	HIGHEST		2nd-HIGHESTPRIORITY			3rd HIGHEST PRIORITY			
	Tally: \$8: 5 SN: 2 SE: 8 SS: 5 SL: 9 SZ: 11		SB: 10 SN: 4 SE: 1 SS: 2 SL: 7 SZ: 8			SE: 0	SN: 5 SS: 0 SZ: 6		

NASA P	NUCLEAR ELECTE					
 Mission Performance Factors — Specific Impulse (Isp): Determines propellant mass — Power Level (P_e): Affects trip time — System Specific Mass (α): Determines trip time limits — Thruster Efficiency (η): Affects trip time, vehicle mass 						
<u>Parameter</u>	Desired Range	Mission Impact				
Isp	High (>5000s)	Low initial mass, Resupply mass				
P _e	High (MWe)	Reduced trip time				
α	Low (<10 kg/kWe)	Reduced Mass, trip time				
η	High (>50%)	Improved mass, trip time				
Professional Committee on Space Program Review 2/7/52	Var 14:1-12	Office of Exploration				

TRANSPORTATION TECHNOLOGY

PROVIDE TECHNOLOGIES THAT SUBSTANTIALLY INCREASE OPERABILITY, IMPROVE RELIABILITY, PROVIDE NEW CAPABILITIES, WHILE REDUCING LIFE CYCLE COSTS

- ENHANCE SAFETY, RELIABILITY, AND SERVICEABILITY OF CURRENT SPACE SHUTTLE
- PROVIDE TECHNOLOGY OPTIONS FOR NEW MANNED SYSTEMS THAT COMPLEMENT THE SHUTTLE AND ENABLE NEXT GENERATION VEHICLES WITH RAPID TURNAROUND AND LOW OPERATIONAL COSTS
- SUPPORT DEVELOPMENT OF ROBUST, LOW-COST HEAVY LIFT LAUNCH VEHICLES
- DEVELOP AND TRANSFER LOW-COST TECHNOLOGY TO SUPPORT COMMERCIAL ELV's AND UPPER STAGES
- IDENTIFY AND DEVELOP HIGH LEVERAGE TECHNOLOGIES FOR IN-SPACE TRANSPORTATION, INCLUDING NUCLEAR PROPULSION, THAT WILL ENABLE NEW CLASSES OF SCIENCE AND EXPLORATION MISSIONS

91-8048

TRANSPORTATION TECHNOLOGY

SHUTTLE ENHANCEMENT-

- SSME improvements
- Durable Thermal Protection Systems
- Improved Health Monitoring
- · Light Structural Alloys
- · Lidar-Based Adaptive Guidance & Control

NEXT GENERATION MANNED TRANSPORTS

- Configuration Assessment
- High Frequency, High Voltage Power Management/Distribution Systems
- LOX/LH2 Propellant for OMS/RCS
- Maintenance-free TPS
- Advanced Reusable Propulsion
- GPS-Based Autonomous GN&C
- Composites & Advanced Lightweight Metals
- Vehicle-Level Health Management For Autonomous Operations

HEAVY-LIFT-GAPADILITY

- Advanced Fabrication (Forming & Joining)
- STME Improvements
- On-Vehicle Adaptive Guidance & Control
- Systems & Components for Electric Actuators
- Health Monitoring for Safe Operations
- · AL-Li Cryo Tanks

LOW-COST COMMERCIAL

- Alternate Booster Concepts
- Advanced Cryogenic Upper Stage Engines
- Low-Cost Fab./Automated Processes/NDE
- Continuous Forging Processes for Cryogenic Tanks
- · Fault-Tolerant, Redundant Avionics

IN-SPACE TRANSPORT

- High-Power Nuclear Thermal & Electric Propulsion
- High Performance, Multiple Use Cryogenic Chemical Engine
- Highly Reliable, Autonomous Avionics
- · Low Mass, Space Durable Materials
- Long-Term, Low-Loss Management of Cryogenic Hydrogen
- Autonomous Rendezvous, Docking & Landing
- Aeroassist Technologies

91-8066

TRANSPORTATION TECHNOLOGY MISSION MODEL

TRANSPORTATION MILESTONES

SPACE PLATFORMS TECHNOLOGY

DEVELOP TECHNOLOGIES TO INCREASE ON-ORBIT MISSION EFFICIENCY AND DECREASE LIFE CYCLE COSTS FOR FUTURE MANNED AND UNMANNED SCIENCE, EXPLORATION & COMMERCIAL MISSIONS.

- DEVELOP TECHNOLOGIES THAT WILL DECREASE LAUNCH WEIGHT AND INCREASE THE EFFICIENCY OF SPACE PLATFORM FUNCTIONAL CAPABILITIES
- DEVELOP TECHNOLOGIES THAT WILL INCREASE HUMAN PRODUCTIVITY AND SAFETY OF MANNED MISSIONS
- DEVELOP TECHNOLOGIES THAT WILL INCREASE MAINTAINABILITY AND REDUCE LOGISTICS RESUPPLY OF LONG DURATION MISSIONS
- IDENTIFY AND DEVELOP FLIGHT EXPERIMENTS IN ALL TECHNOLOGY AND THRUST AREAS THAT WILL BENEFIT FROM THE UTILIZATION OF SSF FACILITIES

91-8052

SPACE PLATFORMS TECHNOLOGY

EARTH ORBITING PLATFORMS

- Structural Dynamics
- On-Orbit Non-Destructive Evaluation Techniques
- · Space Environmental Effects

- · Power Systems
- Thermal Management
- · Advanced Information Systems

SPACE STATIONS

- Regenerative Life Support
- Integrated Propulsion and Fluid Systems Architecture
- · Extravehicular Mobility
- Telerobotics
- Artificial Intelligence

SPACE DASED LABORATORY AND TESTBED

 Exploit Microgravity and Crew Interactive Capability to Advance and Validate Selected Technologies

DEEP SPACE MISSIONS

- Power and Thermal Management
- Propulsion
- · Guidance, Navigation and Control

SPACE PLATFORMS TECHNOLOGY MISSION MODEL

SPACE PLATFORMS MILESTONES

SPACE TECHNOLOGY PLANNING CYCLE

INTEGRATED TECHNOLOGY PLAN FOR THE CIVIL SPACE PROGRAM

TECHNOLOGY READINESS LEVELS

MARCH 17, 1991 JCM-7410

•				
Ŧ				
:				